求函数极限的方法有几种?具体怎么求?
1、利用函数的连续性求函数的极限(直接带入即可)
如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。
2、利用有理化分子或分母求函数的极限
a.若含有,一般利用去根号
b.若含有,一般利用,去根号
3、利用两个重要极限求函数的极限
()
4、利用无穷小的性质求函数的极限
性质1:有界函数与无穷小的乘积是无穷小
性质2:常数与无穷小的乘积是无穷小
性质3:有限个无穷小相加、相减及相乘仍旧无穷小
5、分段函数的极限
求分段函数的极限的充要条件是:
参考资料:百度百科-函数极限
求极限的方法?
1、第一个重要极限的公式:
lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。
特别注意的是x→∞时,1 / x是无穷小,无穷小的性质得到的极限是0。
2、第二个重要极限的公式:
lim (1+1/x) ^x = e(x→∞)当x→∞时,(1+1/x)^x的极限等于e;或当x→0时,(1+x)^(1/x)的极限等于e。
求极限基本方法有:
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。
2、无穷大根式减去无穷大根式时,分子有理化。
3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
极限到底怎么计算的啊?
1、第一个重要极限的公式:
lim sinx / x = 1 (x->0) 当x→0时,sin / x的极限等于1。
特别注意的是x→∞时,1 / x是无穷小,根据无穷小的性质得到的极限是0。
2、第二个重要极限的公式:
lim (1+1/x) ^x = e(x→∞) 当 x → ∞ 时,(1+1/x)^x的极限等于e;或 当 x → 0 时,(1+x)^(1/x)的极限等于e。
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
